
SOCKET(2) Linux Programmer’s Manual SOCKET(2)

NAME
sock

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. These families are defined in the include file
sys/socket.h. The currently understood formats are

AF_UNIX (UNIX internal protocols)

AF_INET (ARPA Internet protocols)

AF_ISO (ISO protocols)

AF_NS (Xerox Network Systems protocols)

AF_IMPLINK (IMP “host at IMP” link layer)

The socket has the indicated type, which specifies the semantics of communication. Currently defined
types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An out-
of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQ-
PA CKET socket may provide a sequenced, reliable, two-way connection-based data transmission path for
datagrams of fixed maximum length; a consumer may be required to read an entire packet with each read
system call. This facility is protocol specific, and presently implemented only for AF_NS. SOCK_RAW
sockets provide access to internal network protocols and interfaces. The types SOCK_RAW, which is
available only to the super-user, and SOCK_RDM, which is planned, but not yet implemented, are not
described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. Howev er, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the “communication domain” in which communication is to take place; see
protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be
in a connected state before any data may be sent or received on it. A connection to another socket is cre-
ated with a connect(2) call. Once connected, data may be transferred using read(2) and write(2) calls or
some variant of the send(2) and recv(2) calls. When a session has been completed a close(2) may be per-
formed. Out-of-band data may also be transmitted as described in send(2) and received as described in
recv(2).

BSD Man Page 24 July 1993 1



SOCKET(2) Linux Programmer’s Manual SOCKET(2)

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error

ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets warm by forcing transmissions roughly every minute in the absence of other activ-
ity. An error is then indicated if no response can be elicited on an otherwise idle connection for a extended
period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes
naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only dif-
ference is that read(2) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in
send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with
its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events via SIGIO.

The operation of sockets is controlled by socket level options. These options are defined in the file
sys/socket.h. Setsockopt(2) and getsockopt(2) are used to set and get options, respectively.

RETURN VALUES
1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS
EPROT ONOSUPPORT

The protocol type or the specified protocol is not supported within this domain.

EMFILE The per-process descriptor table is full.

ENFILE The system file table is full.

EACCESS Permission to create a socket of the specified type and/or protocol is denied.

ENOBUFS Insufficient buffer space is available. The socket cannot be created until sufficient resources
are freed.

CONFORMING TO
4.4BSD (the socket function call appeared in 4.2BSD). Generally portable to/from non-BSD systems sup-
porting clones of the BSD socket layer (including System V variants).

SEE ALSO
accept(2), bind(2), connect(2), getprotoent(3), getsockname(2), getsockopt(2), ioctl(2), listen(2),
read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

"An Introductory 4.3 BSD Interprocess Communication Tutorial" is reprinted in UNIX Programmer’s Sup-
plementary Documents Volume 1

"BSD Interprocess Communication Tutorial" is reprinted in UNIX Programmer’s Supplementary Docu-
ments Volume 1

BSD Man Page 24 July 1993 2


